

Настройка RSTP

© Форт-Телеком, Пермь 2021

Исходя из специфики объектов коммутаторы TFortis часто применяют при работе в кольцевых топологиях, функционирующих на протоколе RSTP.

Применение кольцевой топологии повышает отказоустойчивость сети, но при этом повышается и сложность пусконаладочных работ. А поскольку все коммутаторы в кольце должны работать согласованно, важно правильно настроить каждый коммутатор кольца.

Основные моменты на которые нужно обращать внимание при организации кольцевой топологии:

- 1. Выбор протокола. Коммутаторы PSW поддерживают STP и RSTP. Хотя протоколы обратно совместимые, т. е. Коммутатор с RSTP будет работать в сети с STP, всё-же рекомендуем использовать на всём оборудовании один протокол RSTP.
- 2. Выбор количества устройств в кольце.

Основным ограничением является пропускная способность канала при наихудшем случае, когда при обрыве кольцо трансформируется в одну цепочку. В этом случае коммутатор, ближайший к корневому нагружается максимально.

Поскольку коммутаторы PSW имеют магистральный порт 1 Гб/с, то суммарная нагрузка от всех камер в кольце не должна превышать 800 Мб/с (учитываем запас 20%).

Следующим ограничением является рекомендация протокола IEEE802.w не превышать 7 коммутаторов в кольце. На практике существует опыт успешной эксплуатации колец и с большим количеством коммутаторов, но всё-же для повышения отказоустойчивости (а с увеличением устройств и оптических линий вероятность отказа возрастает) рекомендуем не превышать 7 коммутаторов.

Стратегия настройки протокола RSTP.

Стратегия настройки протокола RSTP выглядит следующим образом:

- 1. На первоначальном этапе кольцо должно быть разомкнуто для исключения широковещательного шторма. Удобнее разомкнуть кольцо со стороны сервера.
- 2. Настраивается центральный коммутатор, которому присваивается статус ROOT (корневой коммутатор). Проверяем, что этот коммутатор стал корневым, в сети отсутствует коммутатор с меньшим приоритетом.
- 3. Настраиваем ближайший к корневому коммутатор PSW, проверяем, что он верно определил корневой коммутатор.
- 4. Настраиваем следующие коммутаторы по очереди, контролируя верное разворачивание дерева RSTP.
- 5. Только после настройки всех коммутаторов кольца его можно замыкать.

Процесс настройки на коммутаторах SWU

- 1. Через WEB-интерфейс открыть страницу RSTP → RSTP Settings. (Рисунок 1) В поле **RSTP State** установить параметр RSTP для включения RSTP.
- 2. Коммутатор SWU-16 применяется в качестве корневого коммутатор кольца. Соответственно, чтобы он стал коревым, нужно установить параметр **Bridge priority** меньшим , чем у остальных коммутаторов. Например Bridge Priority = 4096.
- 3. В разделе Advanced Settings необходимо оставить включенной поддержку кольца только на тех портах, в которые подключены коммутаторы кольца.
- 4. Для применения настроек нажать кнопку **Apply**, при этом произойдёт перезагрузка коммутатора.

RSTP

Bridge settings				
RSTP State	RSTP ~ 1			
Bridge Priority (0-61440)	4096 V 2			
Forward BPDU	Enable V			
TX Hold Count (1-10)	6			
Bridge Max Age (6-40)	20			
Bridge Hello Time (1-2)	2			
Forward Delay Time (4-30)	15			

	Port settings			
Port	State	Port Priority	Cost	Auto cost
1	Enable V	128 🗸	20000	
2	Enable V 3	128 🗸	20000	
3	Disable v	128 -	20000	
4	Disable 🗸	128 ~	20000	
5	Disable V	128 ¥	20000	
		D		

5. Проверить статус на странице RSTP \rightarrow RSTP Status (Рисунок 2)

Bridge status			
STP/RSTP state	Active		
Brige Root status	ROOT		
Protocol	RSTP		
Root bridge MAC	C0:11:A6:C8:01:19		
Root bridge priority	4096		
Path cost to root	0		
Designated bridge MAC	C0:11:A6:C8:01:19		
Designated bridge priority	4096		
Вгіде тах аде Рисуно	20 к 2		

Процесс настройки на коммутаторах PSW

- 1. Через WEB-интерфейс открыть страницу RSTP \rightarrow RSTP Settings (Рисунок 3). В поле RSTP State установить параметр RSTP для включения RSTP.
- 2. Установить параметр Bridge priority больше, чем у корневого. Например Bridge Priority = 32678 (значение по умолчанию).
- 3. В разделе Advanced Settings необходимо оставить включенной поддержку кольца только на тех портах, которые участвуют в кольце
- 4. Для применения настроек нажать кнопку Apply, при этом произойдёт перезагрузка коммутатора.

Bridge settings			
RSTP State	RSTP V 1		
Bridge Priority (0-61440)	<u>32768 v</u> 2		
Forward BPDU	Enable V		
TX Hold Count (1-10)	6		
Bridge Max Age (6-40)	20		
Bridge Hello Time (1-2)	2		
Forward Delay Time (4-30)	15		

	Port settings				
Port	State		Port Priority	Cost	Auto cost
1	Disable 🗸		128 -	200000	
2	Disable 🗸		128 -	200000	
3	Disable 🗸		128 ~	200000	
4	Disable 🗸		128 -	200000	
5	Disable 🗸		128 ¥	200000	
6	Disable 🗸		128 -	200000	
7	Disable 🗸		128 -	200000	
8	Disable 🗸		128 ¥	200000	
9	(Enable 💙)	2	128 ~	20000	
10	Enable 🗸	5	128 -	20000	

Рисунок 3

5. Проверить, что верно определился корневой коммутатор (Рисунок 4)

Bridge status			
STP/RSTP state	Active		
Brige Root status			
Protocol	RSTP		
Root bridge MAC	C0:11:A6:C8:01:19		
Root bridge priority	4096		
Root port	9		
Path cost to root	20000		
Designated bridge MAC	C0:11:A6:C8:01:19		
Designated bridge priority	4096		
Brige max age	20		
Briga Hallo time	2		
PHONHOR A			

Рисунок 4

Пример настройки

Рассмотрим пример организации видеонаблюдения небольшого периметра, когда серверное оборудование расположено в отдельном помещении, а коммутаторы PSW установлены вдоль забора. Такая конфигурация позволяет организовать кольцевую топологию. В нашем примере в серверной в качестве центрального коммутатора установлен SWU-16 (SW1), а на периметре — PSW-2G8F+ (SW2 - SW7).

Порты SW1 задействованы следующим образом: 1 – к SW2 (по оптике) 2 – к SW7 (по оптике) 12 – PC

13 - Server

Порты SW2 – SW7: 1-8 – подключение видеокамер 9-10 — оптические порты аплинка

Настройка выполняется в соответствии со стратегией настройки, рассмотренной выше:

- 1. Соединение между SW1 и SW7 размыкается для исключения возникновения шторма
- 2. Настройка SW1: RSTP State=RSTP, Bridge Priority = 4096, Port 1 и 2 State = Enable
- 3. Настройка SW2: RSTP State=RSTP, Bridge Priority = 32768, Port 9 и 10 State = Enable
- 4. Настройка SW3, и последующих коммутаторов производится аналогично.
- 5. После настройки SW7 можно замкнуть кольцо

Встроенные инструменты диагностики

Для начала рассмотрим набор инструментов диагностики, доступный в коммутаторах TFortis

1. Статистика порта.

Статистика порта доступна на странице Ports \rightarrow Ports Status, напротив нужного порта нажать кнопку **More Info**

При помощи этой статистики можно косвенно оценить качество соединения через этот порт. Для этого интересны счётчики FSC Errors и MACRcvError (Рисунок 6). Они показывают число ошибок физического и канального уровня на интерфейсе.

Если при сравнении статистики интерфейсов одного коммутатора на одном порту значения этих счётчиков намного больше, чем на остальных, то это может косвенно свидетельствовать о проблемах в линии, или разъёмах.

Port Uptime: 1755

Port Statistics

	RX	ТΧ
Good bytes	434002	925195
Bad bytes	0	-
Collision packets	0	-
Discards packets	0	-
Filtered packets	1	1
Unicast packets	3425	4192
Broadcast packets	111	0
Multicast packets	947	5
FCS Errors	0	0
Pause	0	0
Undersize	0	
Oversize	0	
Fragments	0	
Jabber	0	
MACRcvError	0	
Deferred		0
Excessive		0
Single		0
Multiple		0

Рисунок 6

2. Диагностика оптики через SFP

Многие SFP модули поддерживают функцию DDM (Digital Diagnostics Monitoring) – функция диагностики и мониторинга параметров модуля.

Статистика DDM доступна на странице Ports → Ports Status, напротив нужного оптического порта нажать кнопку **SFP Detail.** На данной странице содержится информация о температуре модуля, оптической мощности приёмника и передатчика. Рассмотрим примеры для различных ситуаций:

1) Рисунок 7 — всё в норме, выходная мощность передатчика соответствует заявленной в документации на модуль, оптическая мощность сигнала на приёме не меньше чем порог чувствительности, температура не выше температуры эксплуатации.

Diagnostinc Monitoring Type	104
Temperature	+38 °C
Supply Voltage	3.3 V
TX bias current	1.1 mA
TX output optical power	$0.1 \ \mathrm{mW}$
TX output optical power(dBm)	-9.2 dBm
RX recieved optical power	$0.1 \mathrm{mW}$
RX recieved optical power(dBm)	-8.0 dBm
Рисуно	к 7

2) Рисунок 8 — температура и выходная мощность в норме, а мощность сигнала на приёмнике низкая, хотя и ещё укладывается в порог чувствительности (-20dBm для данного модуля). В этом случае наблюдаются или могут наблюдаться проблемы в канале связи. Необходимо искать причину высокого затухания сигнала.

Lun Longui(tot cooper)	~
Diagnostinc Monitoring Type	104
Temperature	+38 °C
Supply Voltage	3.3 V
TX bias current	1.1 mA
TX output optical power	0.1 mW
TX output optical power(dBm)	-9.2 dBm
RX recieved optical power	$0.0 \ \mathrm{mW}$
RX recieved optical power(dBm)	-19.2 dBm
Рисунок 8	

3) Рисунок 9 — очень низкий уровень входного сигнала, при этом нет связи с удалённой стороной, линк отсутствует. Необходим ремонт оптической линии

Diagnostinc Monitoring Type	104
Temperature	+38 °C
Supply Voltage	3.3 V
TX bias current	1.1 mA
TX output optical power	0.1 mW
TX output optical power(dBm)	-9.2 dBm
RX recieved optical power	$0.0 \ \mathrm{mW}$
RX recieved optical power(dBm)	-26.7 dBm
Рисунок 9	

3. Кабельный тестер (VCT)

Коммутаторы TFortis на «медных» портах имеют встроенный функционал виртуального кабельного тестера. Данный тест позволяет определить тип повреждения (обрыв или короткое замыкание) для каждой пары, а также указать расстояние от коммутатора до места повреждения.

Физический принцип тестирования основан на том, что коммутатор посылает пробный электрический импульс по кабелю, и на основании времени задержки и фазе принятого отраженного сигнала определяет дистанцию до повреждения и ее тип. При этом на время пропадает связь и линк на тестируемом порту.

Если кабель целый, и на другой стороне подключено исправное сетевое устройство, то определение длины кабеля невозможно, т.к. исходя из принципа работы, пробный сигнал будет терминироваться конечным устройством и не будет отражения.

Тестирование происходит нажатием на кнопку Test под соответствующим портом в разделе Diagnostic Tools \rightarrow VCT (Рисунок 8).

После тестирования возможны следующие результаты:

- 1. Short Короткое замыкание между парами
- 2. Open Обрыв или кабель не подключен
- 3. Good Отсутствие повреждения

4. Measurement Error – ошибка измерения, не удалось провести измерение из-за нестабильного характера неисправности, повторите тест ещё раз.

Calibrate

Port	Actual distance	
1		Set
2		Set
3		Set
4		Set

Diagnostic

	Distance		Status		
Port	Pair 1- 2	Pair 3-6	Pair 1-2	Pair 3-6	
1	/	/			Test
2	/	/			Test
3	/	/			Test
4	/	/			Test

Рисунок 8

4. Анализ логов

Коммутатор постоянно пишет в энергонезависимую память все происходящие события. При необходимости эти записи можно посмотреть на странице Statistics \rightarrow Log

Пример лога, при котором произошло кратковременное падение линка на порту #6, в результате чего произошло перестроение кольца:

6974: 13/05/2021 20:58:50: STP port #6 status changed: Discarding 6975: 13/05/2021 20:58:50: STP port #6 status changed: Learning 6976: 13/05/2021 20:58:50: STP port #5 status changed: Discarding 6977: 13/05/2021 20:58:50: STP port #5 status changed: Forwarding 6978: 13/05/2021 20:58:50: STP port #6 status changed: Forwarding 6979: 13/05/2021 21:08:10: Port #6 Link Down 6980: 13/05/2021 21:08:10: STP port #6 role changed: Disabled 6981: 13/05/2021 21:08:10: STP port #5 status changed: Discarding 6982: 13/05/2021 21:08:10: STP port #5 status changed: Learning 6983: 13/05/2021 21:08:10: STP port #5 status changed: Forwarding 6984: 13/05/2021 21:08:10: Port #6 Link Up 6985: 13/05/2021 21:08:10: STP port #6 role changed: Designated 6986: 13/05/2021 21:08:20: STP port #6 status changed: Forwarding 6987: 13/05/2021 21:08:30: STP root port 6, root bridge C0:11:A6:C8:03:40 6988: 13/05/2021 21:08:30: STP: design C0:11:A6:05:22:F4, cost 40000 6989: 13/05/2021 21:08:30: STP port #5 role changed: Designated 6990: 13/05/2021 21:08:30: STP port #6 role changed: Root 6991: 13/05/2021 21:08:30: STP port #6 status changed: Learning 6992: 13/05/2021 21:08:30: STP port #5 status changed: Discarding 6993: 13/05/2021 21:08:30: STP port #6 status changed: Forwarding 6994: 13/05/2021 21:08:30: STP port #5 status changed: Forwarding 6995: 13/05/2021 22:25:40: STP port #6 role changed: Designated 6996: 13/05/2021 22:25:40: STP port #5 role changed: Root 6997: 13/05/2021 22:25:40: STP port #5 status changed: Discarding 6998: 13/05/2021 22:25:40: STP port #5 status changed: Learning 6999: 13/05/2021 22:25:40: STP port #5 status changed: Forwarding 7000: 13/05/2021 22:26:00: STP port #5 role changed: Designated 7001: 13/05/2021 22:26:00: STP port #6 status changed: Discarding 7002: 13/05/2021 22:26:00: STP port #6 status changed: Learning 7003: 13/05/2021 22:26:00: STP port #5 status changed: Discarding 7004: 13/05/2021 22:26:00: STP port #5 status changed: Forwarding 7005: 13/05/2021 22:26:00: STP port #6 status changed: Forwarding

Если система работает стабильно, то в логах не должно появляться новых записей. А если возникают какие-либо проблемы, то в логах можно отследить повторяющиеся события.

Стратегия поиска неисправностей при работе протокола RSTP

Рассмотрим алгоритм проверки правильности работы протокола RTSP:

1. Подключиться к центральному коммутатору, который должен иметь статус корневого коммутатора. Во вкладке RSTP → RSTP Status (Рисунок 9) проверить, что коммутатор имеет статус ROOT, MAC адрес корневого коммутатора (Root Bridge MAC) совпадает с MAC адресом самого коммутатора. В таблице Port Status проверить, что на портах отсутствует статус Edge, счётчик Forward Transistions имеет примерно равное значение для всех портов, участвующих в кольце.

RSTP

Bridge status						
STP/RSTP state	Active					
Brige Root status	ROOT					
Protocol	RSTP					
Root bridge MAC	C0:11:A6:C8:01:19					
Root bridge priority	4096					
Path cost to root	0					
Designated bridge MAC	C0:11:A6:C8:01:19					
Designated bridge priority	4096					
Brige max age	20					
Brige Hello time	2					
Forward Delay Time	15					
Time topology change	98					
Topology changes count	2					

Port status											
Port	State	Link	Baud rate/Duplex	Port state	Port role	Port priority	Patch cost	P2P	Edge	Forward transitions	
1	Active	Link Down		Discarding	Disabled						_
2	Active	Link Up	1000M/Full	Forwarding	Designated	128	20000	P2P		2	
	1			-			-				

Рисунок 9

2. Подключиться к каждому коммутатору PSW.

Во вкладке RSTP \rightarrow RSTP Status (Рисунок 10) проверить:

- что коммутатор HE имеет статус ROOT, MAC адрес корневого коммутатора (Root Bridge MAC) совпадает с MAC адресом корневого коммутатора (SWU-16 в нашем примере).
- Номер порта, направленного в сторону корневого коммутатора, соответствует пути с наименьшей стоимостью
- Параметр Topology changes count не больше, чем на остальных коммутаторах кольца
- Параметр **Time tolopogy change** достаточно большой, что свидетельствует о стабильной работе и отсутствию частых перестроений.
- В таблице Port Status (рисунок 11) проверить, что на портах отсутствует статус Edge, счётчик Forward Transistions имеет примерно равное значение для всех портов, участвующих в кольце.

Bridge status						
STP/RSTP state	Active					
Brige Root status						
Protocol	RSTP					
Root bridge MAC	C0:11:A6:C8:01:19					
Root bridge priority	4096					
Root port	9					
Path cost to root	20000					
Designated bridge MAC	C0:11:A6:C8:01:19					
Designated bridge priority	4096					
Brige max age	20					
Brige Hello time	2					
Forward Delay Time	15					
Time topology change	1006					
Topology changes count	2					

Рисунок 10

9	Active	Link Up	1000M/Full	Forwarding	Root	128	20000	P2P	 3
10	Active	Link Down		Discarding	Disabled				

Рисунок	1	1	-
---------	---	---	---

3. Проверить, что протокол RSTP осуществил логический разрыв в середине кольца (Рисунок 12) Если рассмотреть предыдущий пример, то в статистике коммутатора SW4 или SW5 один из портов должен иметь статус Alternate

Рисунок 12

4. Провести диагностику оптических линий между коммутаторами путём анализа статистики портов на ошибки и через оптическую диагностику SFP модуля (DDM)

5. Проанализировать логи на предмет частых событий, например, часто пропадает линк на оптических портах, либо происходит частое перестроение топологии.